Journal of Electroanalytical Chemistry 999 (2025) 119580

Contents lists available at ScienceDirect

Journal of
Electroanalytical
Chemistry

Journal of Electroanalytical Chemistry

journal homepage: www.elsevier.com/locate/jelechem

ELSEVIER

Hierarchical assembled sulfur-doped Mo—Fe polyoxometalate/ZIF-67 on
Ni foam: A novel and efficient electrocatalyst for water splitting and
urea oxidation

Zhwan Naghshbandi®", Abdollah Salimi®"", Ali Feizabadi

& Department of Chemistry, University of Kurdistan, Sanandaj 66177-15175, Iran
b Research Center for Nanotechnology, University of Kurdistan, Sanandaj 66177-15175, Iran
¢ Department of Chemistry, University of Western Ontario, London, ON, Canada

ARTICLE INFO ABSTRACT

Keywords: Electrocatalytic water splitting is a promising method for high-efficiency hydrogen (Hz) production, providing a
Polyoxometalate (POM) clean and sustainable alternative to fossil fuels. However, the development of efficient, cost-effective, and du-
Electrocatalysis

rable nonprecious metal electrocatalysts for both the oxygen evolution reaction (OER) and hydrogen evolution
reaction (HER) remains a significant challenge. In this study, a novel electrocatalyst-sulfur-doped iron poly-
oxometalate (Fe-POM-S) decorated with zeolitic imidazolate frameworks (ZIF-67) on nickel foam (NF)-was
synthesized via a straightforward multi-step process. Comprehensive characterization confirmed the
morphology, crystal structure, and elemental composition of the NF/Fe-POM-S/ZIF-67 catalyst. The catalyst
showed excellent performance under alkaline conditions for both electrocatalysis and photoelectrocatalysis. It
achieved an overpotential of 190 mV for OER under light and 130 mV for HER after calcination at 500 °C, both at
10 mA cm 2. Overall water splitting required a low cell voltage of 1.5 at a current density of 10 mA cm 2. For
urea oxidation (UOR) in 1.0 M KOH with 0.5 M urea, the catalyst achieved 10 mA cm 2 at only 1.33 V, with
overall urea electrolysis requiring 1.38 V. Notably, the catalyst exhibited exceptional durability, retaining ac-
tivity for over 48 h with negligible performance loss at current density of 100 mA cm™2. This work presents a
facile synthesis strategy for designing high-performance, stable electrocatalysts and photoelectrocatalysts, with
significant potential for renewable energy applications.

Water splitting

Hydrogen evolution reaction (HER)
Urea oxidation reaction (UOR)
Oxygen evolution reaction (OER)
Sulfur doping

evolution reaction (HER), the two half-reactions of water splitting, re-
mains a critical challenge. Photoelectrochemical water splitting, utiliz-

1. Introduction

The global energy crisis, environmental degradation, and reliance on
fossil fuels necessitate the urgent development of sustainable and
renewable energy sources. Hydrogen, as a clean energy carrier with high
energy density and zero carbon emissions, is considered a promising
alternative to conventional fossil fuels [1-4]. However, current indus-
trial hydrogen production methods, such as steam methane reforming
and coal gasification, are unsustainable and contribute significantly to
CO: emissions. Among the various approaches for hydrogen production,
water splitting driven by electrochemical and photoelectrochemical
methods has garnered significant attention due to its ability to produce
high-purity hydrogen in an environmentally friendly manner [5-9].
Despite this potential, the development of efficient and cost-effective
electrocatalysts for the oxygen evolution reaction (OER) and hydrogen

ing sunlight and a suitable photocatalyst, is employed to convert water
molecules into O and Hy. When light shines on a photocatalyst, an
electron is excited from the valence band (VB) to the conduction band,
generating electronic charge carriers, including electrons (e™) and holes
(h+), at the anode. At the anode, the holes generated lead to the con-
version of water into O, and the electrons produced via external circuits
are transferred to the cathode [10-17].

Platinum-based catalysts for HER and Iridium- or Ruthenium-based
catalysts for OER have shown outstanding activity; however, their
high cost, rarity, and limited long-term stability hinder large-scale use
[18-20]. As a result, researchers are focusing on developing earth-
abundant, nonprecious metal catalysts with equal or better
performance.
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Transition metal-based materials, including oxides, sulfides, and
polyoxometalates (POMs), have become promising options because of
their rich redox chemistry, structural flexibility, and cost-effectiveness.
Transition metal sulfides, such as molybdenum sulfides and cobalt sul-
fides, have been widely studied for electrocatalytic water splitting
because of their high activity. Molybdenum disulfide (MoS2), for
example, has a layered structure with a large surface area, but its poor
conductivity, limited active sites, and low durability restrict its catalytic
performance [21]. To overcome these issues, modified MoSz-based cat-
alysts have been developed. Wu et al. reported Mo, Co co-doped NiS bulk
materials grown on Ni foam (Mo,Co-NiS/NF) as effective electro-
catalysts for HER and OER [22]. Similarly, Hou et al. created bimetallic
sulfides (CoSz=—MoS: and NisS—MoS2 nanoflowers) on carbon cloth, used
for HER in acidic solutions [23]. Nickel and cobalt-incorporated MoS:
nanoboxes (Ni-Co-MoSz) [24] and Anderson-type polyoxometalates
(Co-Mo-S/CC) [25] have also demonstrated promising performance as
electrocatalysts for water splitting. Currently, many polyoxometalate/
ZIF-derived materials are employed as electrocatalysts for water split-
ting. The synthesized MoyCoxC@C based on [PMo012040]3~ (PMo12)
clusters embedded into uniform ZIF-67 [26], and the Co/Cu-containing
polyoxometalate/carbon cloth (CugCo7/CC) hybrid [27], have been
used as efficient electrocatalysts for overall water splitting. These find-
ings emphasize the potential of POM/MOF-based precursors for pro-
ducing metal-ion-doped materials with enhanced catalytic activity.

Among these, POMs stand out as a diverse class of molecular inor-
ganic compounds made up of metal-oxygen cluster anions. Usually
formed from transition metals (TMs) like W, Mo, V, Nb, and Ta with high
oxidation states in do or d. electronic configurations, these structures are
linked by oxygen atoms [28-31]. POMs are highly valued for their
excellent redox capacity, thermal stability, and adjustable structures,
which make them very versatile for a range of applications such as
catalysis, medicine, electrochemistry, and photochromism [32-34].
However, their limited electrical conductivity and the presence of
crystal water within their structure significantly hinder their catalytic
efficiency, requiring new strategies to improve their performance.

To overcome these limitations, combining POMs with conductive
and structurally stable materials, such as Fe and Co, has proven to be an
effective strategy [35,36]. In this study, we utilized sulfur doping to
improve the catalytic activity of iron-based POMs (Fe-POM-S), as sulfur
incorporation can enhance electrical conductivity and introduce addi-
tional active sites for catalytic reactions. To further augment the cata-
lytic performance and stability, we integrated zeolitic imidazolate
frameworks (ZIF-67), a subclass of metal-organic frameworks (MOFs),
with Fe-POM-S. ZIF-67, constructed from Co®" ions and 2-methylimida-
zolate linkers, offers a large surface area, exceptional stability, and
tunable porosity, making it an excellent candidate for electrocatalytic
applications [37-39]. By combining ZIF-67 with Fe-POM-S, the syner-
gistic interaction between the two components enhances the availability
of active sites, facilitates charge transfer, and improves overall catalytic
performance [40-42].

Building upon this synergistic design, nickel foam (NF) was chosen as
the substrate due to its high conductivity, large surface area, and
structural integrity. NF serves as an excellent platform for catalyst
deposition, allowing efficient electron transfer during electrocatalytic
reactions [43]. The integration of Fe-POM-S and ZIF-67 onto NF pro-
vides a hierarchical structure that ensures robust mechanical stability
and uniform active site distribution. Moreover, calcination of the cata-
lyst at 500 °C was employed to further enhance its stability and activity,
particularly for HER, by inducing structural optimization and improving
the interaction between the components.

Additionally, the urea oxidation reaction (UOR) was explored as an
alternative to OER in this study. Urea, a major pollutant in wastewater,
offers a lower thermodynamic potential for oxidation compared to OER,
significantly reducing the overall energy input for water splitting
[44-47]. Furthermore, urea possesses a high gravimetric energy density,
making it an attractive candidate for energy storage and conversion
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applications [48-50]. Coupling UOR with HER not only enables energy-
efficient hydrogen production but also facilitates environmental reme-
diation. Building on the pressing need for sustainable and efficient
hydrogen production methods, this study presents a novel, cost-
effective, and scalable approach to fabricating a multifunctional elec-
trocatalyst: sulfur-doped Fe-polyoxometalate decorated with ZIF-67 on
nickel foam (NF/Fe-POM-S/ZIF-67). Through systematic synthesis and
characterization, we demonstrate the exceptional performance of this
catalyst for OER, HER, and UOR, addressing critical challenges in
renewable energy applications.

2. Experimental
2.1. Chemicals

Ammonium heptamolybdate tetrahydrate ((NH4)¢Mo7024.4H20),
Iron(IlI) nitrate hexahydrate (Fe(NO3)3.6H20), Thioacetamide
(C2HsNS), Cobalt(II) acetate tetrahydrate Co(OAc)2.4H20, 2-Methylimi-
dazolate, potassium hydroxide (KOH), potassium chloride (KCl), plat-
inum carbon (Pt/C), and ruthenium oxide (RuO,) were purchased from
Merck. The reagents and chemicals were of analytical grade and used
directly without further purification.

2.2. Instruments and characterization

The morphology and microstructure of the samples were analyzed
using field emission scanning electron microscopy (FE-SEM, Tescan
MIRA3, Tescan, Czech Republic). Imaging was performed in secondary
electron (SE) mode at accelerating voltages ranging from 5 to 20 kV
under high-vacuum conditions. Samples were sputter-coated with a thin
layer of gold to minimize charging. Transmission electron microscopy
(TEM) was carried out using a Philips/FEI EM 208S operated at an
accelerating voltage of 100 kV. The ultrathin sections were deposited on
copper grids and examined in bright-field mode to study the internal
morphology and particle distribution. X-ray photoelectron spectroscopy
(XPS) was performed using a BESTEK EA 10 system (BESTEK, Czech
Republic) equipped with a monochromatic Al Ka X-ray source (1486.6
eV). Survey and high-resolution spectra were acquired to determine the
elemental composition and chemical states of the sample surface.
Charge compensation was applied to minimize surface charging, and the
analysis was conducted under ultra-high vacuum conditions (~10~8
mbar). The crystal structure of the samples was analyzed by X-ray
diffraction (XRD) using a Siemens D-500 diffractometer equipped with a
Cu Ka radiation source (A = 1.5406 A) operating in Bragg-Brentano
geometry. The diffraction patterns were recorded over a 26 range of
5°-80°. Electrochemical experiments were conducted on a computer-
controlled m-Autolab modular electrochemical system (Eco Chemie,
Utrecht, The Netherlands) operated with GPES software (Eco Chemie).

2.3. Synthesis of NF/Fe-POM and NF/Fe-POM-S

A piece of commercial nickel foam (NF) (4 x 8 cm) was ultrasonically
cleaned in water and ethanol to ensure surface cleanliness and enhance
wettability. Subsequently, 0.12 mmol of ammonium heptamolybdate
tetrahydrate ((NH4)eMo07024.4H20) and 0.72 mmol of iron(II) nitrate
hexahydrate (Fe(NO3)3.6H20) were dissolved in 20 mL of deionized
water. The pretreated NF was immersed in the solution, which was then
refluxed at 100 °C for 15 h with gentle stirring. The resulting product
(NF/Fe-POM) was thoroughly washed with deionized water and ethanol
to remove unreacted precursors and dried at 60 °C.

To introduce sulfur doping, NF/Fe-POM was immersed in a solution
of 1.3 mmol of thioacetamide dissolved in 20 mL of a 1:1 mixture of
water and ethanol. The mixture was transferred to a 50 mL Teflon-lined
stainless-steel autoclave and heated at 180 °C for 10 h. After cooling to
room temperature, the NF/Fe-POM-S was collected, rinsed extensively
with deionized water and ethanol, and dried at 60 °C. POM typically has
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a framework built primarily from Mo—O. Sulfur can substitute for ox-
ygen atoms (Mo—S). Sulfur is less electronegative than oxygen, making
Mo centers more electron-rich and enhancing electron transfer rates,
lowering the overpotential. In addition, S doping introduces vacancies
or distortion in the POM framework and more catalytically active sites
[51].

2.4. Synthesis of NF/Fe-POM-S/ZIF-67

To synthesize ZIF-67 on NF/Fe-POM-S, 0.6 mmol of cobalt (II) ace-
tate tetrahydrate (Co(OAc),.4H20) was dissolved in 10 mL of methanol
and stirred for 10 min to form a homogeneous cobalt solution. In a
separate container, 6 mmol of 2-methylimidazolate was dissolved in 10
mL of methanol to prepare the linker solution. The NF/Fe-POM-S sub-
strate was immersed in the cobalt solution, and the 2-methylimidazolate
solution was slowly added dropwise under continuous stirring. The
combined mixture was stirred at room temperature for 24 h to facilitate
the growth of ZIF-67 on the NF/Fe-POM-S surface. After the reaction,
the NF/Fe-POM-S loaded with ZIF-67 (NF/Fe-POM-S/ZIF-67) was
retrieved, thoroughly washed with deionized water and ethanol to
remove unreacted precursors, and dried at 60 °C. The schematic rep-
resentation of the synthesis of NF/Fe-POM-S/ZIF-67 is shown in Scheme
1.

2.5. Synthesis of NF/Fe-POM-S/ZIF-67 (500 °C)

To perform the calcination of NF/Fe-POM-S/ZIF-67, 100 mg of the
material was placed in a quartz boat and heated in a furnace to 500 °C at
aramp rate of 5 °C min~" for 3 h under a continuous nitrogen flow. After
calcination, the furnace was allowed to cool naturally to room temper-
ature, yielding NF/Fe-POM-S/ZIF-67 (500 °C). For comparison, other
samples, including NF/Fe-POM-S, Fe-POM-S/ZIF-67, and NF/ZIF-67,
were also carbonized under identical conditions.

The schematic representation of the synthesis of NF/Fe-POM-S/ZIF-
67 is shown in Scheme 1. NF/Fe-POM-S/ZIF-67 was synthesized through
a three-step process. First, Fe-POM was loaded onto the surface of nickel
foam (NF) using a refluxing method. Next, the Fe-POM on NF was
reacted with thioacetamide via a hydrothermal process to form NF/Fe-
POM-S. Finally, ZIF-67 was decorated onto the NF/Fe-POM-S by react-
ing Co(OAc)2-4H20 with 2-methylimidazolate at room temperature,
resulting in the formation of NF/Fe-POM-S/ZIF-67.

2.6. Electrochemical measurements

The electrocatalytic activities for water splitting and urea oxidation
reaction (UOR) were evaluated using a standard three-electrode system
at room temperature in a 1 M KOH electrolyte, with 0.5 M urea for UOR
measurements. The nickel foam (NF) was used as the working electrode
with an effective area of 0.5 cm?, while a platinum wire served as the
counter electrode, and an Ag/AgCl electrode (3 M KCl) was used as the

(NH,)sMo;0,,.4H,0
Fe(NO,),.6H,0
H,0, Refluxing
100°C, 15h
NF/Fe-POM

Thioacetamide

H,O/EtOH (1:1)
180°C, 10h
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reference electrode. All potentials measured against the Ag/AgCl elec-
trode were calibrated to the reversible hydrogen electrode (RHE) using
the Nernst equation (Erug = Eag/agcl + 0.059 x pH + 0.197). Linear
sweep voltammetry (LSV) curves were recorded at a scan rate of 5 mV
s~ Overpotentials () were calculated using the formula: n = Eryg-
EfTheoretical- Where the theoretical RHE potentials for OER, HER, and UOR
were 1.23 V, 0 V, and 0.47 V, respectively. The kinetic performance of
the catalysts was assessed using the Tafel equation: n = blogj + a. where
n is the overpotential, b is the Tafel slope, and j is the current density.
The electrochemical surface area (ECSA) was estimated from the double-
layer capacitance (Cq)) values, calculated using the equation: Cgq = I/v,
where I represents the current density (mA cm~2), and v is the scan rate
(mV s 1). Electrochemical impedance spectroscopy (EIS) was performed
to evaluate the charge transfer resistance of the electrocatalyst, with
measurements taken over a frequency range of 0.1 Hz to 10 kHz using a
modulation voltage of 250 mV. The experiments were conducted in a 1
M KOH solution with a redox probe comprising a 1 mM K3[Fe (CN)gl/
K4[Fe (CN)g] (1:1) and 0.1 M KCl. The stability of the catalyst for OER,
HER, and UOR was assessed by chronoamperometric measurements.

The morphological features of NF/Fe-POM-S, NF/Fe-POM-S/ZIF-67,
and NF/Fe-POM-S/ZIF-67 (500 °C) were examined using scanning
electron microscopy (SEM) and transmission electron microscopy
(TEM). The SEM images (Fig. 1a, b) revealed the uniform distribution of
Fe-POM-S with a spherical structure on the NF substrate. The SEM im-
ages further demonstrated the formation of uniform rhombic dodeca-
hedral crystals of ZIF-67 on NF/Fe-POM-S (Fig. 1c, d). Upon calcination
at 500 °C, the morphology of NF/Fe-POM-S/ZIF-67 remained stable, as
evidenced by the consistent rhombic dodecahedral crystal structure
observed in SEM images (Fig. le, f). This stability indicates the structural
robustness of NF/Fe-POM-S/ZIF-67 under thermal treatment. Similarly,
TEM images of NF/Fe-POM-S/ZIF-67 (Fig. 1g, h) corroborated the SEM
observations, highlighting the preservation of the rhombic dodecahedral
morphology.

The uniform distribution of key elements C, N, S, Mo, Fe, Co, and Ni
was confirmed through SEM-based elemental mapping (Fig. 1i). The
energy-dispersive X-ray (EDX) analysis further quantified the elemental
composition of NF/Fe-POM-S/ZIF-67, showing weight percentages of
24.16 % (C), 14.08 % (N), 22.88 % (S), 11.17 % (Mo), 1.52 % (Fe), 1.97
% (Co), and 24.22 % (Ni) (Fig. S1). These results indicate the successful
integration of all components into the composite structure.

The phase and crystalline structures of NF, NF/Fe-POM-S, ZIF-67,
NF/Fe-POM-S/ZIF-67 and NF/Fe-POM-S/ZIF-67 (500 °C) were analyzed
using X-ray diffraction (XRD), as shown in Fig. 2a. The diffraction peaks
at 44.7°, 52.02°, and 76.1° correspond to the (111), (200), and (220)
crystal planes of NF, respectively. Characteristic peaks of Fe-POM-S
were observed at 20 values of 9.98°, 26.1°, 26.4°, 31.4°, and 38.1°,
which are assigned to the (001), (021), (002), (222), and (003) planes.
Additionally, sharp peaks at 7.3°, 10.6°, 12.8°, 15.1°, 16.7°, 18.2°,
24.9°, and 27.3° correspond to the (011), (002), (112), (022), (013),
(222), (114), and (233) planes, which are in good agreement with the

2-MIM

NF/Fe-POM-S/ZIF-67

NF/Fe-POM-S

Scheme 1. Schematic illustration of the synthetic process for NF/Fe-POM-S/ZIF-67.
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Fig. 1. SEM images of (a, b) NF@Fe-POM-S, (c, d) NF/Fe-POM-S/ZIF-67, and (e, f) NF/Fe-POM-S/ZIF-67 (500 °C), TEM images of (g, h) NF/Fe-POM-S/ZIF-67 and (i)

EDS elemental mapping of NF/Fe-POM-S/ZIF-67.
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Fig. 2. (a) XRD patterns of NF, NF/Fe-POM-S, ZIF-67, NF/Fe-POM-S/ZIF-67 and NF/Fe-POM-S/ZIF-67 (500 °C), (b) FT-IR spectra of NF/Fe-POM-S/ZIF-67.

crystalline structure of ZIF-67. These XRD results confirm the successful
integration of NF, Fe-POM-S, and ZIF-67 components in the composite
[48-54]. Moreover, the XRD pattern of NF/Fe-POM-S/ZIF-67 (500 °C)
demonstrated that the structure is stable despite calcination at 500 °C.

The formation of NF/Fe-POM-S/ZIF-67 was further validated using
Fourier Transform Infrared (FT-IR) spectroscopy, as presented in Fig. 2b.
A broad peak at 3425 cm ™! was attributed to the stretching vibration of
hydroxyl (OH) groups associated with interlayer water molecules. Peaks
at 2925 cm™! and 2856 cm ™! correspond to the stretching modes of
C—H bonds in the aromatic ring and aliphatic chain of 2-methylimida-
zolate (2-MIM), respectively. The peak at 1622 cm™! is associated
with the stretching vibration of the C=C bond, while peaks at 1419
em™! and 1139 cm™! are indicative of C=N stretching vibrations.
Additionally, characteristic peaks at 992 em !, 754 cm™!, and 424 cm ™!
are attributed to the stretching vibrations of M-S (M = Mo and Fe),

Mo-S-Mo, and Co—N bonds, respectively [48-54].

X-ray photoelectron spectroscopy (XPS) was also employed to
analyze the surface chemical states of elements in NF/Fe-POM-S/ZIF-67
(Fig. 3). The survey spectrum confirmed the coexistence of Ni, Mo, Fe, S,
N, C, and Co elements, indicating successful integration of all compo-
nents. The S 2p spectrum was deconvoluted into two peaks at 161.6 eV
and 162.8 eV, corresponding to S 2ps/2 and S 2p./2, respectively, con-
firming the formation of sulfur-metal bonds [55]. The Mo 3d spectrum
displayed binding energy peaks at 231.8 eV (Mo 3ds/2) and 234.9 eV
(Mo 3ds/>), which are characteristic of a Mo®" oxidation state [56,57].
In the C 1 s spectrum, four distinct peaks were observed at 284.5 eV,
285.4 eV, 286.4 eV, and 287.9 eV, corresponding to C—=C, C=N, C—O,
and C—N bonds, respectively [58], indicating the presence of functional
groups from the ZIF-67 framework and sulfur doping. Similarly, the N 1
s spectrum revealed peaks at 400.4 eV, 401.6 eV, and 402.5 eV, which
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Fig. 3. XPS spectra of NF/Fe-POM-S/ZIF-67: S 2p, Mo 3d, C1s, N 1 s, Fe 2p, Co 2p, Ni 2p, and the survey spectrum.

were assigned to pyridinic, pyrrolic, and graphitic nitrogen species,
respectively [59,60]. The Fe 2p spectrum exhibited four peaks: 709.3 eV
(Fe 2ps/2) and 719.3 eV (Fe 2p1/2) corresponded to Fe3+, while 713.1 eV
(Fe 2pa/2) and 723.2 eV (Fe 2p./2) were attributed to Fe?t [56,57]. The
Co 2p spectrum displayed peaks characteristic of Co>* at 786.3 eV (2ps/
2) and 802.5 eV (2p1/2), as well as peaks for Co** at 791.6 eV (2ps/2) and
806.2 eV (2p1/2) [59,60]. Finally, the Ni 2p spectrum displayed peaks at

852.1 eV and 871.2 eV for metallic Ni°, and the peaks at 854.1, 874.6 eV
and 857.1, 878.7 eV were assigned to the 2ps/; and 2p; /2 spin orbital
peaks of Ni* and Ni%*, respectively [61-63]. These XPS results
demonstrate significant electronic interactions between the Ni foam
substrate, Fe-POM-S, and ZIF-67, which play a crucial role in enhancing
the electrocatalytic performance of the composite.

The electrocatalytic activities of the synthesized samples were
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Fig. 4. Electrocatalytic performance of the as-prepared catalysts for OER: (a) OER polarization curves, (b) Tafel slopes for OER, (c) Electrochemical impedance
spectroscopy (EIS), (d) Long-term stability test of NF/Fe-POM-S/ZIF-67, (e) Comparison of OER polarization curves for NF/Fe-POM-S/ZIF-67 (light-irradiated), NF/
Fe-POM-S/ZIF-67 (ambient conditions), and RuO, (f) Double-layer capacitance (Cq4;) of the as-prepared electrocatalysts.
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evaluated for the oxygen evolution reaction (OER) and hydrogen evo-
lution reaction (HER) using a three-electrode system in 1.0 M KOH.
Linear sweep voltammetry (LSV) was performed at a scan rate of 5 mV
s1, with manual 90 % iR-correction applied to all data using electro-
chemical impedance spectroscopy (EIS). As shown in Fig. 4a, the OER
performance of NF/Fe-POM-S/ZIF-67, NF/Fe-POM-S, Fe-POM-S/ZIF-67,
and NF/ZIF-67 was assessed under both light irradiation and ambient
conditions. NF/Fe-POM-S/ZIF-67 under light irradiation exhibited su-
perior performance with a lower onset potential of 1.39 V compared to
1.42 V under ambient conditions. The overpotential () for NF/Fe-POM-
S/ZIF-67 (light), NF/Fe-POM-S/ZIF-67, NF/Fe-POM-S, Fe-POM-S/ZIF-
67, and NF/ZIF-67 was calculated as 190, 230, 260, 350, and 420 mV,
respectively, at a current density of 10 mA cm™2. NF/Fe-POM-S/ZIF-67
(light) and NF/Fe-POM-S/ZIF-67 also demonstrated better performance
than RuO: (Fig. 4e), highlighting the synergistic effects of NF, Fe-POM-S,
and ZIF-67.

The Tafel slopes for OER (Fig. 4b) confirmed faster reaction kinetics
for NF/Fe-POM-S/ZIF-67 under light irradiation, which showed the
lowest Tafel slope of 61 mV dec™!. NF/Fe-POM-S/ZIF-67, NF/Fe-POM-S,
Fe-POM-S/ZIF-67, and NF/ZIF-67 exhibited Tafel slopes of 68, 82, 88,
and 191 mV dec™?, respectively, indicating the superior catalytic ki-
netics of NF/Fe-POM-S/ZIF-67. EIS analysis (Fig. 4c) revealed that NF/
Fe-POM-S/ZIF-67 exhibited the lowest charge transfer resistance (Rt) of
0.9 Q, compared to 1.4 Q for NF/Fe-POM-S, 2.6 Q for Fe-POM-S/ZIF-67,
and 6.6 Q for NF/ZIF-67. The low R, evaluated by EIS at a set potential
of 1.5 V, facilitated faster charge transfer and enhanced catalytic
activity.

The long-term electrochemical stability of NF/Fe-POM-S/ZIF-67 for
OER was evaluated using chronoamperometric analysis in 1.0 M KOH at
1.5 V (Fig. 4d). The current density remained stable over 24 h,
demonstrating excellent long-term stability. Additionally, a Long-term
stability test at a higher current density of 100 mA cm~2 was per-
formed in 48 h, and the result showed that 95 % of the NF/Fe-POM-S/
ZIF-67 remained after 48 h (Fig. S2). Post-stability analysis using SEM
(Fig. S4) and XRD (Fig. S5) confirmed that the morphology and structure

Journal of Electroanalytical Chemistry 999 (2025) 119580

of NF/Fe-POM-S/ZIF-67 remained intact.

The electrochemically active surface area (ECSA) was determined
from the double-layer capacitance (Cqj) values obtained via cyclic vol-
tammetry in the non-faradaic region (Fig. S3) and (Fig. 4f) [64]. NF/Fe-
POM-S/ZIF-67 exhibited the highest Cq value of 81 mF cm™2, signifi-
cantly greater than NF/Fe-POM-S (35 mF cm’z), Fe-POM-S/ZIF-67 (15
mF cm™2), and NF/ZIF-67 (6 mF cm ™ 2), indicating a higher density of
catalytically active sites.

POMs act as photosensitizers, absorbing visible or UV light due to
their strong d-d or LMCT transitions. Upon light absorption, photoex-
cited electrons are promoted from HOMO to LUMO. Electrons from
excited POMs can be transferred to ZIF-67. ZIF-67 can act as conductive
pathways or co-catalysts, helping separate and transport charges. This
suppresses charge recombination and facilitates hole accumulation for
oxidation. The photo-generated holes (h*) on POMs or metal centers in
ZIF can oxidize water molecules [65,66].

HER performance was evaluated for NF/Fe-POM-S/ZIF-67 (500 °C),
NF/Fe-POM-S (500 °C), Fe-POM-S/ZIF-67 (500 °C), and NF/ZIF-67
(500 °C) using LSV (Fig. 5a). NF/Fe-POM-S/ZIF-67 (500 °C) demon-
strated superior HER activity with an overpotential of 110 mV at 10 mA
crn’z, outperforming NF/Fe-POM-S (170 mV), Fe-POM-S/ZIF-67 (273
mV), and NF/ZIF-67 (339 mV). The enhanced performance is attributed
to the synergistic effects of the NF, Fe-POM-S, and ZIF-67 components,
further optimized by calcination. Tafel slopes (Fig. 5b) confirmed this
observation, with NF/Fe-POM-S/ZIF-67 (500 °C) exhibiting the lowest
Tafel slope of 95 mV dec ™, compared to 182 mV dec ™! for NF/Fe-POM-
S, 121 mV dec ™ for Fe-POM-S/ZIF-67, and 270 mV dec ™" for NF/ZIF-
67. To investigate the catalytic kinetic characteristics of the NF/Fe-
POM-S/ZIF-67 (500 °C) during HER electrochemical impedance spec-
troscopy (EIS) was performed over a frequency range of 0.1 Hz to 10 kHz
in 1.0 M KOH (Fig. 5¢). The transfer resistance (R.t) of NF/Fe-POM-S/
ZIF-67 (500 °C) was measured 2.6 Q, which is lower than NF/Fe-
POM-S (500 °C) (5.9 @), NF/ ZIF-67 (500 °C) (15.71 Q), and NF
(500 °C) (28.8 Q). Chronopotentiometric analysis (Fig. 5d) confirmed
the stability of NF/Fe-POM-S/ZIF-67 (500 °C) for HER, with negligible
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Fig. 5. Electrocatalytic performance of the as-prepared catalysts for HER: (a) HER polarization curves, (b) Tafel slopes for HER, (c) Electrochemical impedance
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performance degradation over 24 h at a stable potential of 1.5V in 1.0 M
KOH.

To demonstrate practical applicability, NF/Fe-POM-S/ZIF-67 under
light illumination and NF/Fe-POM-S/ZIF-67 (500 °C) were employed as
the anode and cathode, respectively, in a two-electrode electrolyzer for
overall water splitting in 1.0 M KOH (Fig. 6a). This electrolyzer achieved
a current density of 10 mA cm~2 with a low cell voltage of 1.5 V, out-
performing a Pt/C|| RuO; as cathode and anode for water splitting. As
illustrated for Pt/C|| RuO; cell for a current density of 10 mA cm 2 the
cell voltage was 1.73 V under identical conditions. Long-term stability
was confirmed via LSV after 1000 cyclic voltammetry (CV) cycles
(Fig. 6b), with minimal changes observed, further highlighting the
robustness of the NF/Fe-POM-S/ZIF-67||NF/Fe-POM-S/ZIF-67 (500 °C)
system.

2.7. Urea oxidation reaction (UOR)

The UOR catalytic activity of NF/Fe-POM-S/ZIF-67 was evaluated
using LSV at a scan rate of 5 mV s~ in an electrolyte containing 0.5 M
urea and 1.0 M KOH (Fig. 7a). NF/Fe-POM-S/ZIF-67 exhibited superior
UOR catalytic activity compared to other samples and commercial RuOa.
At a current density of 10 mA cm™2, NF/Fe-POM-S/ZIF-67 required a
potential of 1.33 V, significantly lower than NF/Fe-POM-S (1.36 V), Fe-
POM-S/ZIF-67 (1.38 V), and NF/ZIF-67 (1.43 V). Additionally, the long-
term stability of NF/Fe-POM-S/ZIF-67 was assessed using chro-
nopotentiometry at a constant potential of 1.4 V in 1.0 M KOH for 24 h
(Fig. 7b). The results demonstrated excellent electrochemical durability,
with negligible performance degradation. The Tafel slope of NF/Fe-
POM-S/ZIF-67 was measured to be 40 mV dec™?, substantially lower
than NF/Fe-POM-S (105 mV dec™ 1), Fe-POM-S/ZIF-67 (110 mV dec™1),
and NF/ZIF-67 (122 mV dec_l) (Fig. 7c). The smaller Tafel slope of NF/
Fe-POM-S/ZIF-67 highlights its faster reaction kinetics and superior
catalytic efficiency.

To further investigate its performance in overall urea electrolysis, a
two-electrode electrolyzer was assembled using NF/Fe-POM-S/ZIF-67 as
the anode and NF/Fe-POM-S/ZIF-67 (500 °C) as the cathode. LSV plots
revealed that the electrolyzer achieved a current density of 10 mA cm ™2
at a cell voltage of 1.38 V, outperforming the Pt/C||RuO: electrolyzer
under identical conditions. Stability was confirmed by comparing LSV
curves before and after 1000 cyclic voltammetry (CV) cycles. The post-
1000-cycle LSV showed only a slight potential increase of 10 mV, with a
potential of 1.39 V at 10 mA cm ™2, demonstrating excellent long-term
durability of the NF/Fe-POM-S/ZIF-67 ||NF/Fe-POM-S/ZIF-67 (500 °C)
electrolyzer (Fig. 7d).
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2.8. Potential mechanism for the OER, HER and UOR on NF/Fe-POM-S/
ZIF-67

The NF/Fe-POM-S/ZIF-67 catalyst exhibits excellent electrocatalytic
performance in alkaline media. Nickel foam (NF) provides a conductive
scaffold, ensuring efficient electron transport and structural stability.
While the polyoxometalate (POM) containing Fe and Mo, doped with
sulfur, serves as the primary catalytic center: Fe sites facilitate water
oxidation, Mo enhances electronic conductivity, and sulfur modifies the
electronic structure to promote OH™ adsorption and activation. ZIF-67
deposited on the POM surface increases the accessible surface area
and provides Co active sites, which can form CoOOH species under
alkaline conditions. Under light irradiation, ZIF-67 generates photoex-
cited electrons that are efficiently transferred through the POM to the
NF, enhancing charge separation and accelerating the OER kinetics.
OH™ ions adsorbed on the Fe/Mo/S and Co sites undergo oxidation,
producing O: with improved efficiency. Calcination of the NF/Fe-POM-
S/ZIF-67 catalyst at 500 °C significantly enhances HER performance.
The high-temperature treatment improves electronic conductivity by
removing organic ligands and forming a more crystalline and stable
metal/oxide phase. Additionally, calcination increases the accessible
surface area and preserves a porous structure, providing more active
sites for water reduction. These structural and electronic improvements
also enhance the catalyst’s stability under alkaline conditions, resulting
in faster HER kinetics and superior long-term performance. Stepwise
urea oxidation occurring at Fe/Mo/S and Co active sites. The synergistic
integration of NF, POM-S-FeMo, and ZIF-67 ensures high surface area,
rapid electron transfer, and superior catalytic performance OER, HER
and UOR.

To benchmark the catalytic performance, the OER and HER activities
in 1.0 M KOH [67-75], as well as UOR activity in 0.5 M urea with 1.0 M
KOH [76-82], and overall water splitting performance in 1.0 M KOH
[68,72,83-87], of NF/Fe-POM-S/ZIF-67 at 10 mA cm 2 were compared
to some other previously reported electrocatalysts (Fig. 8). The results
highlight that the synergistic heterostructure of NF, Fe-POM-S, and ZIF-
67 provided rich active sites and facilitated effective charge transfer,
resulting in superior electrocatalytic performance compared to similar
catalysts. Furthermore, the low cost, high efficiency, and long-term
stability of these catalysts encourage their design and exploration for
water-splitting applications over a wide pH range.

In summary, NF/Fe-POM-S/ZIF-67 was successfully synthesized
through the stepwise growth of sulfur-doped iron polyoxometalate (Fe-
POM-S) on nickel foam (NF), followed by the decoration of ZIF-67. The
composite demonstrated outstanding electrocatalytic performance for
the oxygen evolution reaction (OER), hydrogen evolution reaction
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and (c) overall water splitting in 1.0 M KOH.

(HER), and urea oxidation reaction (UOR). Under light irradiation, NF/
Fe-POM-S/ZIF-67 achieved an overpotential of 190 mV at a current
density of 10 mA cm 2 for OER, with a Tafel slope of 61 mV dec L. After
calcination at 500 °C, it exhibited an overpotential of 110 mV and a
Tafel slope of 95 mV dec™! for HER in 1.0 M KOH. For overall water
splitting, an electrolyzer using NF/Fe-POM-S/ZIF-67 as the anode and
NF/Fe-POM-S/ZIF-67 (500 °C) as the cathode achieved a cell voltage of
1.5V at 10 mA cm ™2 in alkaline media. Additionally, NF/Fe-POM-S/ZIF-
67 showed superior UOR activity, requiring only 1.33 V to achieve 10
mA em ™2 in an electrolyte containing 0.5 M urea and 1.0 M KOH, while

the same electrolyzer achieved a cell voltage of 1.38 V for overall urea
electrolysis at 10 mA cm 2. The composite and its calcined counterpart
exhibited excellent stability across all three reactions, maintaining
performance over prolonged durations. These results underscore the
synergistic integration of NF, Fe-POM-S, and ZIF-67, providing a low-
cost, high-efficiency, and durable electrocatalyst suitable for water
splitting and urea electrolysis applications over a wide pH range, of-
fering valuable insights for the development of next-generation energy
systems.
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